

Crop Simulation Models in Field Trials

Svend Vendelbo Nielsen, 04-03-2025

Outline

- Who are we?
- Sales-pitch
- What is a crop simulation model?
- Why use crop simulation models?

Who are we?

- In the Agriculture and Digitalization centre of Danish Technological Institute, we have a data modeling team
- We oversee the analyses of hundreds of field trials every year and make the statistics in Nordic Field Trial System.
- In our research projects, crop simulation are used to
 - Predict yield in future climate
 - Explain nitrous oxide emission
- Crop simulation models can be used in field trials as well!

Sales-pitch for Crop Simulation Models (CSM)

Extrapolate results*:

What is a crop simulation model?

Daily weather for the full growing season, Soil sample data, Planting days, Irrigation, Fertilization

Teknologisk Institut

...

What is a crop simulation model?

• Most crop simulation models compute the daily growth of each plant component:

Growth of grain during one day = $\begin{cases} 0 & \text{if crop has not reached grain filling stage} \\ f(\text{leaf area, available water, temperature, nutrients, ...}) \\ 0 & \text{if crop is no longer in grain filling stage} \end{cases}$

• The formulas come from experiments rather than inferred from big data:

Silliman SE, Berkowitz B, Simunek J, van Genuchten MT. Fluid flow and solute migration within the capillary fringe. Ground Water. 2002 Jan-Feb;40(1):76-84. doi: 10.1111/j.1745-6584.2002.tb02493.x. PMID: 11803946.

How good are crop simulation models?

- The models are better than randomly guessing the between-year variation, but not much better (Müller et al. 2017), because:
 - Difficult to get sitespecific data
 - The computations are not calibrated to their specific area

Müller, Christoph, et al. "Global gridded crop model evaluation: benchmarking, skills, deficiencies and implications." *Geoscientific Model Development* 10.4 (2017): 1403-1422.

Calibrated crop simulation models

Daily weather, Soil sample data, Planting days, Irrigation, Fertilization, Yield data

CERES calibrated wheat model

Days required to vernalization=5 Photoperiod response (%redu./10h)=75 Grain phase duration (Tdays)=450 Kernel number per canopy weight=30 Kernel weight(mg)=35 Standard tiller weight=1 Tdays between leaf appearances=60 Duration phase 1=200 Duration phase 2=200 Duration phase 3=15

••••

Minimum grain N=0

Days required to vernalization=9.3 Photoperiod response (%redu./10h)=13.2 Grain phase duration (Tdays)=331.4 Kernel number per canopy weight=12.11 Kernel weight(mg)=63.48 Standard tiller weight=2.2 Tdays between leaf appearances=86 Duration phase 1=362 Duration phase 2=258 Duration phase 3=13

Minimum grain N=2

Calibrated model results

- There have been very high accuracy for wellcalibrated crop simulation models, when predicting between-variety yields (Mukhtar, et al. 2016).
 - One field trial repeated 3 years,
 - Wheat, APSIM and CERES models,
 - R²=0.85

2009	2010	2011
Calibration data	Test data	Test data

Ahmed, Mukhtar, et al. "Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application." *Computers and Electronics in Agriculture* 123 (2016): 384-401.

Teknologisk Institut

Use for field trials

- It is possible to calibrate a crop simulation model to one or more field trials, and then predict yields in related situations.
- One can explore different locations, different weather, different sowing dates, different fertilization schemes, etc.

 \bigtriangledown

Use Crop simulation model (CSM) to make **better analysis**

Treat- ment	Mois- ture	Clay %	SOM %	Yield		Treatment	CSM- simulated vield
1	40	6	2.5	4.5		1	4.4
1	45	6.5	2.5	4.2		1	4.0
						•••	
4	32	8	2	5.5		4	4.4
		+ we	ather	→ ┤	Crop simulati model	on	

Teknologisk Institut

Yield

4.5

4.2

5.5

Conclusion

- Crop Simulation models work best when the data quality is high, and it has been calibrated to a similar system.
- They have potential to improve the analysis of field trials and extrapolate field trial results
- I hope to find valuable uses for these methods in field trials.

Treatment	CSM-estimated yield	Yield
1	4.4	4.5
1	4.0	4.2
4	4.4	5.5

Thank you

Questions, past experiences, ideas?

Calibrated crop simulation models

Teknologisk Institut

Use in analysis of field trials

 In data-intensive field trials, the number of variables can be high compared to the number of plots

Effect	Degrees of freedom
Treatment	4
Block	4
Soil moisture	1
Clay percentage	1
Residual variance	6
Total degrees of freedom	16

4 treatments, 4 Blocks/Repetitions

Use in analysis of field trials

 In data-intensive field trials, the number of variables can be high compared to the number of plots

Effect	Degrees of freedom
Treatment	4
Block	4
Soil moisture, Clay Percentage, SOM, and their interactions	6
Residual variance	2
Total degrees of freedom	16

4 treatments, 4 Blocks/Repetitions

Use in analysis of field trials

 In data-intensive field trials, the number of variables can be high compared to the number of plots

Effect	Degrees of freedom
Treatment	4
Block	4
Effect of Soil moisture, Clay Percentage, SOM estimated by Crop Simulation Model	1
Residual variance	7
Total degrees of freedom	16

4 treatments, 4 Blocks/Repetitions

